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Chronic stroke patients with heterogeneous lesions, but no direct damage to the primary sensorimotor cortex, are capable of

longitudinally acquiring the ability to modulate sensorimotor rhythms using grasping imagery of the affected hand. Volitional

modulation of neural activity can be used to drive grasping functions of the paralyzed hand through a brain–computer interface.

The neural substrates underlying this skill are not known. Here, we investigated the impact of individual patient’s lesion

pathology on functional and structural network integrity related to this volitional skill. Magnetoencephalography data acquired

throughout training was used to derive functional networks. Structural network models and local estimates of extralesional

white matter microstructure were constructed using T1-weighted and diffusion-weighted magnetic resonance imaging data. We

employed a graph theoretical approach to characterize emergent properties of distributed interactions between nodal brain

regions of these networks. We report that interindividual variability in patients’ lesions led to differential impairment of func-

tional and structural network characteristics related to successful post-training sensorimotor rhythm modulation skill. Patients

displaying greater magnetoencephalography global cost-efficiency, a measure of information integration within the distributed

functional network, achieved greater levels of skill. Analysis of lesion damage to structural network connectivity revealed that

the impact on nodal betweenness centrality of the ipsilesional primary motor cortex, a measure that characterizes the importance

of a brain region for integrating visuomotor information between frontal and parietal cortical regions and related thalamic nuclei,

correlated with skill. Edge betweenness centrality, an analogous measure, which assesses the role of specific white matter fibre

pathways in network integration, showed a similar relationship between skill and a portion of the ipsilesional superior longi-

tudinal fascicle connecting premotor and posterior parietal visuomotor regions known to be crucially involved in normal grasp-

ing behaviour. Finally, estimated white matter microstructure integrity in regions of the contralesional superior longitudinal

fascicle adjacent to primary sensorimotor and posterior parietal cortex, as well as grey matter volume co-localized to these

specific regions, positively correlated with sensorimotor rhythm modulation leading to successful brain–computer interface

control. Thus, volitional modulation of ipsilesional neural activity leading to control of paralyzed hand grasping function through

a brain–computer interface after longitudinal training relies on structural and functional connectivity in both ipsilesional and

contralesional parietofrontal pathways involved in visuomotor information processing. Extant integrity of this structural network
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may serve as a future predictor of response to longitudinal therapeutic interventions geared towards training sensorimotor

rhythms in the lesioned brain, secondarily improving grasping function through brain–computer interface applications.
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Introduction
Chronic stroke is a leading cause of long term motor disability

among adults, as rehabilitative interventions are largely unsuccess-

ful in improving the most severe cases of motor impairment fol-

lowing the event (Lai et al., 2002). This lack of recovery is

particularly exacerbated in the case of hand function (Krakauer,

2005). The human brain selects and executes reaching and grasp-

ing actions through the dynamic linkage of specific neuron popu-

lations into functional networks (Shadmehr and Wise, 2005).

These networks are continuously sculpted through modifications

of underlying anatomical microstructure, which optimize and but-

tress advantageous interaction patterns through experience-based

plasticity mechanisms triggered by evaluation of contingent goals,

actions and sensory consequences (Johansen-Berg, 2007;

Holtmaat and Svoboda, 2009; Wilbrecht et al., 2010). When

the brain suffers a substantial injury, such as following stroke, a

proportion of the anatomical components of these networks may

be compromised and result in radically perturbed functional dy-

namics (Honey and Sporns, 2008; Alstott et al., 2009). In a finite

acute window following the event, a state of synaptic instability

occurs within peri-infarct regions that allows for rapid reorganiza-

tion of constituent networks (Dancause et al., 2006; Brown et al.,

2007; Murphy and Corbett, 2009; Dimyan and Cohen, 2011;

Yu and Zuo, 2011). Although plasticity within these networks

may attenuate once the subacute phase is reached, a considerable

capacity for reorganization is still maintained that continues

throughout the chronic phase, as well (Ward, 2005; Nudo,

2006; Sawaki et al., 2008; Murphy and Corbett, 2009).

It has been repeatedly shown that physical training in acute,

subacute and chronic stages of stroke is capable of influencing

compensatory functional network interaction patterns and under-

lying anatomical microstructure (Nudo, 2006). This is the scientific

basis for a majority of novel rehabilitation strategies that are pro-

gressively used in clinical settings, including constraint-induced

movement therapy (Taub et al., 1993; Wolf et al., 2010) or

active forms of robotic-assisted upper limb therapy, in which the

robot amplifies intrinsic muscle forces produced by the patient to

assist in the completion of a visuomotor task (Fasoli et al., 2003;

Lo et al., 2010). A major limitation to these types of interventions,

however, is that they fail to be inclusive of patients with severe

hand function deficits, as their implementation relies on the pres-

ence of some residual motor function. In many clinical trials, this

has meant the exclusion of up to 80% of otherwise eligible pa-

tients (Grotta et al., 2004; Sawaki et al., 2008). In patients experi-

encing severe paralysis, contingencies between overt actions and

consequences can no longer be used to drive reorganization within

functional brain networks, making them prone to devolution

towards a maladaptive state indicative of learned disuse

(Krakauer, 2006; Pomeroy et al., 2011). Several recent studies

suggest that functional network organization may be impacted

through operant conditioning paradigms that use neurofeedback

to establish new contingencies between volitional modulation of

neural activity and extrinsic sensory feedback (Jarosiewicz et al.,

2008; Legenstein et al., 2010). Thus, interventions that train pa-

tients to acquire volitional control of neural activity modulation

may be beneficial for this particular group of patients with

stroke (Grosse-Wentrup et al., 2011a).

Motor imagery is one strategy used to condition voluntary con-

trol of neural activity in visuomotor networks. Several neuroima-

ging and electrophysiological studies have observed that motor

imagery of grasping movements, the conscious rehearsal of ego-

centric motor actions without overt motor output (Jeannerod

et al., 1995), engages bilateral parietofrontal networks in a similar

manner to executed movements (McFarland et al., 2000;

Pfurtscheller, 2000; Sharma et al., 2008, 2009a, b; Gao et al.,

2010). As a result, motor imagery training has been investigated

as a means of actively engaging extant motor networks in chronic

stroke populations with severe hand function deficits (Sharma

et al., 2006; Page et al., 2007, 2009). More recently, augmenta-

tion of motor imagery training with brain–computer interface

technology, which implements exogenous contingencies between

neural activity and sensory feedback, has been promoted as a

possible strategy for increasing the efficacy of this type of rehabili-

tation through the establishment of explicit links between neural

activity modulation related to covert motor intentions, and sensory

consequences (Daly and Wolpaw, 2008; Wang et al., 2010b).

Additionally, brain–computer interface approaches can provide

direct brain control of mechanical orthoses, robotic exoskeleton

devices or functional electrical stimulation systems interfaced

with the impaired limb leading to restoration of function

(Birbaumer and Cohen, 2007). To that end, we have previously

reported that a group of patients with chronic stroke with severe

hand paralysis can longitudinally learn to control a non-invasive

brain–computer interface that operates a mechanical hand orthosis

through volitional modulation of sensorimotor rhythms recorded

over the ipsilesional hemisphere (Buch et al., 2008). The neural

substrates underlying the ability of patients with stroke to success-

fully control volitional sensorimotor rhythm modulation through

motor imagery are not known. One approach to address this

question is to evaluate the impact of each individual patient’s

pathology on characteristics of engaged anatomical and functional

cortical networks.

In the past few years, both structural and functional connectivity

neuroimaging data have been increasingly modelled using an

applied form of graph theory known as complex network analysis

(Sporns, 2011). This analytical approach attempts to explicitly

characterize both the direct and indirect extrinsic contributions to
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regional function in the brain (Passingham et al., 2002). Complex

network graphs and other methods that quantify interactions be-

tween brain regions have recently given new insight into the spon-

taneous reorganization of functional and structural brain networks

following stroke (Nomura et al., 2010; Wang et al., 2010a; Crofts

et al., 2011; Grefkes and Fink, 2011; Rehme et al., 2011b).

Several studies suggest that one property of these networks,

cost-efficiency, is an important optimization principle that governs

both structural and functional brain network architecture (Fornito

et al., 2011). Highly cost-efficient networks preferentially employ

long-range connectivity, allowing for faster and more robust in-

formation transfer between discrete brain regions, while at the

same time minimizing the related energy cost of fibre pathway

maintenance (Laughlin and Sejnowski, 2003; Buzsaki et al.,

2004; Achard and Bullmore, 2007). This property appears to

have behavioural implications as well, since it has been shown

to correlate with memory and intellectual performance in both

healthy volunteers and patient groups (Bassett et al., 2009; van

den Heuvel et al., 2009). A related local property of network

graphs, betweenness centrality, highlights specific brain regions

or white matter fibre pathways that are particularly important

for functional integration between distant brain areas (Rubinov

and Sporns, 2010), and has been shown to predict motor hand

recovery in stroke (Wang et al., 2010a). This property also reveals

locations within networks where functional dynamics are more

vulnerable to the impact of brain lesions (Honey and Sporns,

2008; Alstott et al., 2009). Exploration of these two properties

of brain networks may lead to more insight into relationships be-

tween abnormal brain activation patterns, and behavioural deficits

or recovery following stroke (Grefkes and Fink, 2011). Moreover,

as these properties are described within a topological framework

and can be related non-spatially, they hold a distinct advantage

over voxel-based techniques for characterizing pathological

changes in brain connectivity in heterogeneous stroke populations

(Crofts et al., 2011).

Here, we employed a combination of neuroimaging modalities,

including magnetoencephalography, and diffusion and T1-

weighted structural MRI, to evaluate the impact of each individ-

ual patient’s lesion pathology on their ability to modulate

ipsilesional sensorimotor rhythm power (using affected hand

motor imagery strategies) after longitudinal brain–computer inter-

face training. For the first time, we use a complex network ana-

lytical approach to understand the neural substrates of voluntary

modulation of neural activity through operant conditioning after

chronic stroke. We hypothesized that the longitudinally acquired

skill of volitional neural activity modulation would be directly

related to extant parietofrontal structural network integrity facil-

itating communication between premotor, primary motor and pos-

terior parietal visuomotor cortical regions normally involved in

grasping function.

Patients and methods

Patients
Patients with chronic hand plegia resulting from a single subcortical or

mixed (cortical and subcortical) stroke (n = 8; mean age = 58.4 � 8.4

years, mean duration = 31.5 � 18.2 months) were recruited from the

Human Cortical Physiology and Stroke Neurorehabilitation Section of

the National Institute for Neurological Disorders and Stroke (n = 6) and

the Clinic of Neurology of the University of Tübingen (n = 2). Patients

were included in the study if they had a history of a single stroke, and

expressed residual finger extension strength rated as 0/5 on the

Medical Research Council (MRC) scale (Table 1). All patients also

had either a 0/5 or 1/5 MRC score for finger flexion strength and

were incapable of voluntary finger extension in the plegic hand.

Shoulder, elbow and finger flexor and extensor spasticity was rated

as 43 on the Modified Ashworth Scale for all patients. These criteria

ensured that the affected arm could maintain a comfortable posture

while seated in the magnetoencephalography chair, and that move-

ment of the affected hand could only be produced via passive ma-

nipulation from the attached orthosis. Cognitive function was assessed

using the Mini-Mental State Examination (Folstein et al., 1975), and

found to be in the normal range (all patients scored 523 out of 30).

Patients provided written informed consent and the study was

approved by the Institutional Review Board of the National Institute

of Neurological Disorders and Stroke and the Ethical Committee of the

Faculty of Medicine of the University of Tübingen. Individual patient

lesions and group probability lesion maps can be seen in Fig. 1.

Table 1 Patient lesion characteristics

Patient Age
(years)

Sex Ipsilesional
hemisphere

Time post
stroke (m)

Total lesion
volume
(cm3)

Grey matter
proportion of
lesion

White matter
proportion of
lesion

MRC score of residual
finger flexion/extension
(out of 5)

SP1 63 F Right 30 80.00 0.15 0.83 0/0

SP2 64 F Right 69 25.39 0.17 0.83 1/0

SP3 53 M Left 25 57.16 0.17 0.81 0/0

SP4 55 M Right 41 14.93 0.16 0.83 1/0

SP5 53 M Left 12 7.41 0.19 0.78 0/0

SP6 67 M Right 14 4.10 0.26 0.74 0/0

SP7 44 F Right 24 17.57 0.05 0.95 0/0

SP8 68 M Right 37 64.10 0.18 0.80 1/0

Mean � SD 58.38 � 8.42 31.50 � 18.19 33.83 � 28.95 0.17 � 0.06 0.82 � 0.06 0.37 � 0.52/0.00 � 0.00

F = female; M = male.
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Experimental design

Brain–computer interface training sessions

Patients participated in an average of 15.4 � 4.8 brain–computer

interface training sessions (range 9–22) with an average frequency

of 4.6 � 0.8 sessions per week. Each training session lasted 1–2 h

and was implemented on an outpatient basis.

Magnetoencephalography recordings

Neuromagnetic activity recorded from a 275-channel (seven patients)

or 151-channel (one patient) magnetoencephalography array (CTF

MEGTM) was used to control a brain–computer interface as previously

described at both the National Institutes of Health and the University

of Tübingen. The magnetoencephalography apparatus was housed in

a magnetically shielded room and used synthetic third gradient

Figure 1 Brain lesions. (A) Sagittal, coronal and axial views of individual subject T1-weighted MRI scans with segmented brain lesions.

A secondary segmentation of the total lesion was implemented to distinguish between core (red) and peri-necrotic (blue) regions based on

differences in T1 signal intensity. Slices for each view are shown at the centre of gravity location for the core lesion. (B) Group core lesion

(top; slices through MNI coordinate x = 26, y = �15, z = 2), peri-necrotic lesion (middle; 24, �18, 35) and total lesion (bottom; 25, �15,

29) probability maps displayed in MNI152 space. Left hemisphere lesions for Patients SP3 and SP5 have been flipped to the right-side. Two

clusters (outlined in black) within the group lesion probability map show an overlap of at least seven of eight patients. The first cluster

(517 mm3 volume; centre of gravity: 23.16, �14.57, 29.23) is located within the superior portion of the corona radiata, while a smaller

more inferior cluster (60 mm3 volume; 25.38, �14.17, 2.87) is located in the external medullary lamina.
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balancing to actively reduce interference from environmental noise.

Recordings from all magnetoencephalography channels were anti-

aliased with a 200-Hz cut-off, low-pass filter, and digitally sampled

at 600 Hz. During recording, patients were seated alone in the shielded

magnetoencephalography room with the lights slightly dimmed, and

their head centrally positioned within the sensor array.

Sensorimotor rhythm-based brain–computer interface

Harmonic brain rhythms are believed to be an important mechanism

underlying regional brain activity, as well as the long-range synchron-

ization and dynamic recruitment of multiple distant brain regions into

global functional networks. Regularly observable brain rhythms span

several frequency bands and have been linked to important cognitive

and sensorimotor functions (Palva and Palva, 2011). One of these, the

sensorimotor or m-rhythm, is believed to play an important functional

role in transforming perceptual goals to motor actions (Pineda, 2005).

The sensorimotor rhythm has a base m band frequency range of

9–12 Hz, with a harmonic in the � band at 20–24 Hz, and can be

recorded from scalp regions overlying the sensorimotor cortex. The

terms event-related synchronization and desynchronization are com-

monly used to describe increases and decreases, respectively, in sen-

sorimotor rhythm power relative to a baseline. Sensorimotor rhythm

desynchronization has been repeatedly observed during the planning,

execution, or even imagination of limb movements (Pfurtscheller,

1977; McFarland et al., 2000), a particularly pertinent feature for

use in patients with chronic stroke with severe hand plegia. The

BCI2000 software platform (www.bci2000.org) was used to estimate

and classify sensorimotor rhythm state modulation, and drive the

task-related visual feedback display in real-time during brain–computer

interface training. Sensorimotor rhythm power estimates were derived

from a cluster of 3–4 magnetoencephalography sensors selected from

a subset of the array overlying the ipsilesional sensorimotor cortex, as

training of this cortical region would actively engage motor networks

affected by the stroke lesion. Surface EMG was recorded from extrinsic

hand muscles during training sessions.

Real-time feedback and brain–computer interface
training task

Patients performed up to 250 trials of a goal-oriented, one-

dimensional visual feedback task per training session. The task was

designed to help patients achieve volitional control of sensorimotor

rhythm modulation overlying the ipsilesional sensorimotor cortex,

and thus control of the orthosis (Fig. 2). As the task corresponded

to the two possible orthosis states (opened or closed grasping posture

of the affected hand), individual trials were initiated by the presenta-

tion of a visual target on either the upper or lower half of the right

side of a monitor display. Each target was essentially a visual repre-

sentation of the sensorimotor rhythm power range assigned to the

corresponding orthosis action by an adaptive classifier. A square

screen cursor would then begin moving at a fixed rate from

left-to-right across the display with the cursor feedback updated

every 200 ms. The vertical height of the cursor was a transformation

of the difference between the current sensorimotor rhythm state esti-

mate and an adaptive baseline set by the brain–computer interface

classifier. The goal for the patient was to modulate sensorimotor

rhythm power in the direction needed (above or below the baseline)

to deflect the screen cursor towards the target, and ultimately contact

the target when the cursor reached the right edge of the screen. The

brain–computer interface software maintained a finite history of the

mean sensorimotor rhythm power estimate from each trial and as-

signed this to a distribution representing observations for each target

(or orthosis action) state. The baseline, defined as the midpoint be-

tween the means of these two distributions, was adaptive to account

for changes in these sensorimotor rhythm power distributions over the

course of training. At the conclusion of each successful trial (cursor

contact with target), a simultaneous change in target colour (red to

yellow) and orthosis action occurred, providing reinforcement. If the

cursor failed to hit the target, no reinforcement (target colour change

or orthosis action) was provided.

Hand orthosis

During all brain–computer interface training sessions, a mechanical

orthosis was attached to the plegic hand. Fingers 2–5 (index,

middle, ring and little fingers) were individually inserted into ring-like

fasteners that fixed each digit at the first phalanx. Each fastener was

connected to a plastic Bowden cable. Computer-gated pneumatic

valves extended or retracted the cables to manipulate hand grasping

posture. The orthosis had two possible movement motions: synchron-

ous flexion or extension of the fingers resulting in hand grasp closing

or opening, respectively. The hand posture limits produced by these

two orthosis states were customized to each patient, so that they

manipulated the hand through a safe range-of-motion. On successful

trials, orthosis action triggers were synchronized in time with target

colour changes in the brain–computer interface training task through a

custom control circuit.

Magnetic resonance imaging data
acquisition
Whole brain, single-shot echo-planar (EPI) diffusion-weighted volumes

(110 non-collinear directions; b = 100 smm�2 [10 directions],

300 mm�2 [10], 500 smm�2 [10], 800 smm�2 [30] or 1100 smm�2

[50]; 60 slices; voxel size 2.5 � 2.5 � 2.5 mm3; echo time/repetition

time = 76.4 ms/18.28 s) plus 10 volumes without diffusion weighting

(b = 0 smm�2) were acquired for seven of the eight subjects

(excluding Patient SP6) following training on a 3.0 Tesla GE Excite

scanner using an 8-channel coil (GE Medical Systems). In addition

structural T1-weighted (magnetization-prepared rapid gradient-echo

sequence; echo time/repetition time = 2.67 ms/6.26 s, flip angle = 12�;

voxel size = 0.9375 � 0.9375 � 1 mm3) and T2-weighted (echo time/

repetition time = 122.52 ms/8.35 s; voxel size = 0.4688 � 0.4688 �

1.5 � mm3) volumes were acquired for all subjects.

Data analysis

Sensorimotor rhythm modulation skill

The success rate, or the proportion of trials in which patients were

successful at producing the required sensorimotor rhythm power

modulation that resulted in screen cursor contact with the target,

was computed for trial presentations during a single training session

and used as a skill measure. As the task was one-dimensional and

consisted of only two states, initial success rates of �0.5 indicate

‘chance’ levels of performance. A paired t-test was used to compare

changes in group skill (mean of first three and final three sessions)

following training. To assess if individual patients showed significant

changes in skill during training, the change-point test was used (Siegel

and Castellan, 1988). The change-point test assumes the null hypoth-

esis that no time trend exists in the series of performance data. Based

on this assumption, skill for each session should rank on average near

the median, and the cumulative sum of ranks should increase approxi-

mately linearly with session number. The maximal deviation from this

expected linear increase in rank is considered as a potential
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‘change-point’ and is used to divide the time series into two compo-

nents. These components are then compared using a Kolmogorov–

Smirnov test to determine statistical significance at � = 0.5.

Magnetoencephalography data

Preprocessing and analysis of the data was performed using the

Fieldtrip toolbox for EEG/magnetoencephalography analysis, de-

veloped at the Donders Institute for Brain, Cognition and Behavior

(http://www.ru.nl/neuroimaging/fieldtrip). A Discrete Fourier

Transform (DFT) filter was used to remove line noise from the raw

data (60 Hz for the six NIH patients, and 50 Hz for the two patients

from the University of Tübingen). The data was then band-pass fil-

tered between 0.1–50 Hz, and finally down-sampled to 120 Hz to

reduce offline processing loads.

Raw signals from CTF axial gradiometers have contributions from a

wide spatial range of sources inside the brain, making it difficult to

interpret signal topography in sensor space. Several common source

regression modelling techniques, such as beamformers, have been de-

veloped to estimate signal source locations within the brain volume,

but in doing so change the inherent covariance structure of the raw

time-series data that is used to derive functional connectivity esti-

mates. Thus, to retain the time-series correlation structure of the

raw sensor space data, and make spatial features of the sensor

space data easier to interpret, we performed a planar gradient trans-

formation of that data at each sensor (Bastiaansen and Knösche,

2000). All further analyses were performed on planar gradient data.

The average functional connectivity between each sensor pair for

each task state was estimated by computing the phase-locking value.

If the time-series of each trial for a particular sensor and task state is

denoted as xn(t) for n = 1 to N, where N is the number of trials for

that particular task state, a complex time–frequency power spectral

density representation Xn(f, t) for xn(t), can be calculated by imple-

menting Welch’s averaged modified periodogram method with a slid-

ing Hamming window of 1 s duration and 50% overlap between

Figure 2 Trial description for sensorimotor rhythm (SMR) modulation through grasping imagery training. Whole-head magnetoence-

phalography data were continuously recorded throughout each training block (48 trials). At the initiation of each trial, one of two targets

(top-right or bottom-right edge of visual display) appeared on a projection screen positioned in front of the subject. A screen cursor

appeared at the left edge of the screen 500 ms later, and began moving towards the right edge at a fixed rate. Sensorimotor rhythm power

modulation was estimated from a preselected subset of the sensor array (three to four source sensors) at 150-ms intervals throughout the

trial (4 s duration), and compared to an adaptive baseline that characterized the midpoint between the power distribution means for each

task state (target/orthosis action conditions). The distance of the current power state from this baseline was transformed into an upwards

(positive) or downwards (negative) deflection of the screen cursor’s vertical position, with an update rate of 6.7 Hz. At the conclusion of

the trial, if the subject successfully deflected the cursor to contact the target, two simultaneous reinforcement events occurred. The cursor

and target on the display changed colours from red to yellow, and the orthosis manipulated the impaired hand’s grasp posture to the

alternative state (opening or closing of hand). If the cursor did not successfully contact the target, no orthosis action was initiated.
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adjacent windows. Similarly, the time–frequency representation,

Yn(f, t), can be calculated for the time-series recorded at a second

sensor in the array, yn(t), and the phase-locking value (PLV) between

the two sensors for that task state can be defined as:

PLVxy f ,tð Þ ¼
1

N

XN

n¼1

Xn f ,tð Þ

jXnðf ,tÞj
�

Yn f ,tð Þ

Yn f ,tð Þ
�� ��
 !������

�����
Phase-locking value quantifies the across-trial consistency of the

phase relationship between two sensors as a function of frequency

and time. Phase-locking values were calculated for all pair-wise

sensor combinations for each of the two brain–computer interface

task states during the feedback period (during which the patients

were actively trying to deflect the screen cursor towards the target),

and the mean phase-locking value was determined for the same fre-

quency band from which sensorimotor rhythm state estimates were

derived (12 Hz for six patients, 12.5 Hz for one patient, and 9 Hz for

one patient). All magnetoencephalography measures were calculated

for each session of training (either sensorimotor rhythm modulation or

cost-efficiency). Since the number of sessions was slightly different

between our patients, we then resampled each magnetoencephalogra-

phy measure versus session curve to have 20 sessions. The final mag-

netoencephalography and behavioural measures included in the

regression analysis were the average of the last three sessions taken

from this resampled curve.

Functional network construction

Phase-locking value estimates for every sensor pair were used to con-

struct a functional connectivity matrix, Wij, which represents the phase

coupling between sensors i and j. The values of the main diagonal of

the matrix are set to zero, Wii = 0, so that there are no self-

connections. The connectivity matrix can then be thresholded and

binarized to construct an undirected binary graph, G:

Gi,j ¼
1, if Wi,j4T
0, otherwise

�

where T is a threshold that determines the sparseness of edges (or

connections between sensor pairs) in the resulting graph.

Following the approach of Basset et al. (2009), we examined the

relationship between functional network cost-efficiency observed for

individual patients and their sensorimotor rhythm modulation skill

(Bassett et al., 2009). For each threshold, T, applied to create the

network graph, G, consisting of N nodes, the cost or connection dens-

ity, C, is defined as:

C ¼
1

N N� 1ð Þ

X
i6¼j

Gi,j

The regional efficiency at each sensor, E(i), is defined as:

E ið Þ ¼
1

N� 1

X
j

1

Li,j

where Li,j is the minimum number of edges that connect sensor i to j,

and N is again the total number of nodes in the network. Note that if

no connection exists between i and j, then Li,j =1 and 1/Lij = 0. The

global efficiency, E, is the mean of E(i) over all sensors. Thus, for each

threshold, T, the cost-efficiency, CE, is defined as:

CE ¼ E � C

In general, for a given fixed number of connections (cost), a greater

proportion of long-range connections results in higher global

cost-efficiency as information can be shared between distant network

nodes via shorter paths. One of the challenges faced when deriving a

binary association matrix from a continuous connectivity measure, is

determining how to select the binarization threshold in a non-arbitrary

way. Furthermore, determining a single threshold that can be applied

across a group of patients in an unbiased manner can also be difficult,

as the connection density must be controlled to make meaningful

comparisons between different network graphs. In this case, this was

particularly important as the goal of the comparison was to assess how

differences in the pattern of connections (as opposed to the number of

connections) related to sensorimotor rhythm skill.

The major assumption of this method, that network architecture is

organized in a manner that optimizes the relationship between global

efficiency (a quality of how information is integrated across the brain)

and cost (the number of connections maintained to share that infor-

mation) has been recently supported by functional imaging studies

(Achard and Bullmore, 2007; Fornito et al., 2011). To determine the

optimal cost-efficient functional network architecture observed in each

individual patient, we derived a series of binary, undirected networks

that were defined over a range of fixed costs. For individual graphs

possessing a specific cost, a threshold, T, was used that was deter-

mined by the phase-locking value distribution for the functional con-

nectivity matrix calculated for each patient. The maximum

cost-efficiency value was calculated for data acquired over the final

three training sessions for each patient and then regressed against

sensorimotor rhythm modulation skill from the same period, providing

the most unbiased approach for assessing the relationship between

these two variables. The relationship between this network measure

and sensorimotor rhythm modulation skill was statistically assessed

using iteratively re-weighted-least squares regression (Street et al.,

1988).

This magnetoencephalography data analysis allows for the compre-

hensive exploration of global functional network organization after

stroke, our focus of interest. On the other hand, while alternative

methodologies involving source-based connectivity modelling of mag-

netoencephalography data (i.e. dynamic causal model) allow for more

direct interpretations about specific regions involved, these are re-

stricted to smaller or less-resolved networks (Kiebel et al., 2009). To

gain insight into the local features of structural network architecture

that support functional interactions related to this task, we utilized

diffusion and T1-weighted MRI data to understand intersubject differ-

ences in structural connectivity.

Magnetic resonance imaging data

Preprocessing of the diffusion weighted images was performed with

algorithms included in the TORTOISE software package (www.tortoi

sedti.org) (Pierpaoli et al., 2010). Diffusion weighted images were first

corrected for motion and eddy current distortions according to Rohde

et al. (2004) including proper reorientation of the b-matrix to account

for the rotational component of the subject rigid body motion

(Leemans and Jones, 2009). In addition, B0 susceptibility induced

echo planar image distortions were corrected using an image registra-

tion based approach using B-splines (Wu et al., 2008). All corrections

were performed in the native space of the diffusion weighted images.

For consistency, all images were reoriented into a common space

defined by the mid-sagittal plane, the anterior commissure and the

posterior commissure (Bazin et al., 2007) also with appropriate rota-

tions to the b-matrix. A non-linear diffusion tensor model was then fit

to the corrected data. Tensors volumes for Patients SP3 and SP5, who

had right-hemispheric lesions, were then right-left flipped, with appro-

priated reflections of the tensors applied as well.

Following tensor estimation, spatial normalization was performed

using a non-parametric, diffeomorphic deformable image registration

technique implemented in DTI-TK (www.nitrc.org/projects/dtitk/),

which incrementally estimates its displacement field using a

602 | Brain 2012: 135; 596–614 E. R. Buch et al.



tensor-based registration formulation (Zhang et al., 2006). It is de-

signed to take advantage of similarity measures comparing tensors

as a whole via explicit optimization of tensor reorientation and includes

appropriate reorientation of the tensors following deformation.

Lesion segmentation

Lesions in each patient were segmented using an iterative, partially

unsupervised method. First, T2-weighted volumes were rigid-body

aligned with T1-weighted volumes. These two aligned volumes were

then used as multi-channel inputs to the FMRIB Automated

Segmentation Tool (FAST), a part of the FMRIB Software Library

(http://www.fmrib.ox.ac.uk/fsl/). FAST was used to derive partial

volume estimates at each voxel for grey matter, white matter and

CSF tissue classes. These partial volume estimates were then

non-linearly transformed into MNI152 space using FMRIB’s

Non-linear Image Registration Tool, and compared to a standard

map of partial volume estimates derived from the same scans (identical

acquisition sequences) acquired in 120 healthy volunteers on the same

scanner through the computation of a distance map (measured as the

Euclidean distance between patients with stroke and healthy volunteer

template grey matter, white matter, and CSF partial volume estimate

vectors at each voxel location). The resulting distance map was thresh-

olded at 0.95, and binarized to create a lesion mask in MNI space. An

MNI-space ventricular mask was then used to remove any part of the

lesion mask that included portions of the ventricles. The resulting

lesion mask was then eroded, dilated and smoothed with a 1-mm

radius spherical kernel, and transformed back into the original subject

space using the inverse non-linear warp field. The mask was then used

as an input mask for subsequent non-linear registration iterations. For

each iteration, the inclusion of the previous lesion mask resulted in a

subsequent change in the non-linear registration to the MNI template.

A total of 10 iterations were performed in this manner. The final lesion

masks were then visually inspected, and any artefacts present were

manually corrected. A secondary segmentation of the total lesion was

implemented to distinguish between core and peri-necrotic regions

based on differences in T1 signal intensity.

Structural network construction

We used the Johns Hopkins University Probabilistic Fibre Atlas (http://

cmrm.med.jhmi.edu) (Zhang et al., 2010) in conjunction with the seg-

mented individual patient lesions to derive a structural connectivity

matrix, and construct a weighted, undirected structural network

graph. Regions of interest used as seeds and targets in the construc-

tion of the atlas, were employed as nodes in the anatomical network.

Probabilistic atlas tracts were non-linearly transformed to MNI152

standard space with FMRIB’s Non-linear Image Registration Tool,

and used to define connections between each node based on the

tractography-based connectivity matrix published by Zhang et al.

(2010). For each patient, lesion segmentation masks were also

non-linearly transformed into MNI152 standard space, with all tract

values for voxels overlapping with the lesion mask in a particular sub-

ject set to zero. As the probability value for each tract falls off at

voxels distant from its centre, this meant that lesion overlap with cen-

tral regions of each tract were weighted more heavily in terms of the

impact on structural connectivity. The weight for a given network

connection was defined as the ratio of the spared fibre tract probability

sum to the total original tract probability sum.

The resulting connectivity matrix was then subjected to one add-

itional correction procedure. Since it is probable that the net effect of a

core lesion that transects a fibre tract is greater than an effect caused

by a reduction in tract volume, a custom cluster search algorithm was

used to identify non-contiguous components of the tract indicative of

transections following removal of tract voxels overlapping with the

core lesion segmentation. If multiple components were present, with

at least two of them possessing a volume 520% of the total tract

volume, the transection was considered to be significant, and the con-

nectivity value was set to zero. This threshold was used to eliminate

erroneous or relatively minor transections that occurred along the edge

of the tracts where measurement noise and normal population vari-

ance make the identification of transections less reliable. The specific

use of 20% was empirically determined, as it provided the best cor-

respondence with tract transections visually identified in one of the

patient data sets. Based on these criteria, a total of 13 tract transec-

tions were identified in our patient group, with at least one significant

transection defined in five of eight patients.

We decided against using a tractography-based approach to define

our structural network as peri-infarct regions usually contain high

amounts of glial cell aggregation that significantly affect water diffu-

sion anisotropy in a complex manner (Budde and Frank, 2010). Under

these circumstances, the relative contribution of white matter micro-

structure properties and gliosis to between-subject differences in mea-

sured anisotropy cannot be fully dissociated with standard diffusion

MRI techniques (Newton et al., 2006; Kunimatsu et al., 2007). To

avoid this confound, we implemented lesion segmentation overlaps

with a probabilistic atlas of major white matter fibre bundles derived

from data acquired in healthy volunteers and gain insight into the

disruption of structural connectivity within the ipsilesional hemisphere

(Riley et al., 2011).

Measures of nodal and edge betweenness centrality, which describe

the degree to which individual brain regions and white matter fibres

respectively contribute to the shortest pathway connecting other brain

regions, were calculated for each patient’s weighted structural con-

nectivity matrix. The nodal betweenness centrality of a given node n

is defined as:

CB nð Þ ¼
X

i6¼n 6¼j

�ijðnÞ

�ij

where �ij is the total number of shortest paths from node i to node j

and �ij(n) is the number of those shortest paths that pass through

node n. The edge betweenness centrality of a given node e is defined

as:

CB eð Þ ¼
X
i6¼j

�ijðeÞ

�ij

where �ij is the total number of shortest paths from node i to node j

and �ij(n) is the number of those shortest paths that contain edge e.

Tract-based spatial statistics analysis of extralesional
fractional anisotropy

To explore structural network characteristics in the contralesional

hemisphere, we used a complimentary tract-based spatial statistics

analysis approach that characterizes white matter microstructure rela-

tionships associated with sensorimotor rhythm modulation skill in

voxels not contributing to the lesion segmentation in any patient.

Fractional anisotropy maps for each patient were created from the

spatially normalized tensor outputs from DTI-TK. A mean fractional

anisotropy image was created and then skeletonized using a fractional

anisotropy threshold of 0.2. Each subject’s aligned fractional anisot-

ropy image was then projected onto this mean skeleton by searching

perpendicular from the skeleton for maximum fractional anisotropy

values. This step allows for the statistical comparison of fractional an-

isotropy values from homologous regions of the fractional anisotropy

map. An extralesional group mask was constructed by summing
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individual patient lesion masks transformed into the common group

tensor space, binarizing, and then inverting. Thus, only voxels falling

outside the lesioned mask boundaries in all patients were included in

subsequent analyses. Between-subject variance in fractional anisotropy

from homologous regions was then related to voluntary modulation of

sensorimotor rhythm, with the acquired skill serving as a general linear

model regressor (Buch et al., 2010). The threshold free cluster en-

hancement option, a novel method for enhancing cluster-like struc-

tures in statistical images, was used for subsequent statistical tests.

Resulting corrected P-value maps were thresholded at P4 0.05.

Average fractional anisotropy values within clusters were then corre-

lated with the sensorimotor rhythm modulation skill to determine the

correlation coefficient for the cluster.

Voxel-based morphometry region of interest analysis
of extralesional grey matter volume

We extended our analysis to grey matter regions adjacent to the white

matter voxels where fractional anisotropy correlated with sensorimotor

rhythm modulation skill. A voxel-based morphometry region of inter-

est analysis was performed using the standard FMRIB Software Library

pipeline. First, structural images were brain-extracted using BET. Next,

tissue-type segmentation was carried out using FAST. The resulting

grey matter partial volume estimates were then aligned to MNI152

standard space with FMRIB’s Non-linear Image Registration Tool. The

resulting images were averaged to create a study-specific template, to

which the native grey matter images were then non-linearly

re-registered. The registered partial volume images were then cor-

rected for local expansion or contraction by dividing by the Jacobian

of the warp field. The corrected segmented images were then

smoothed with an isotropic Gaussian kernel with a sigma of 4 mm.

Two separate spherical region of interest masks with a radius of 25 mm

were centred on the MNI-space location of the maximum t-statistics

for the two clusters identified in the tract-based spatial statistics ana-

lysis relating white matter fractional anisotropy with skill (x, y,

z = �29, �56, 35 and �38, �21, 32). All voxels of both masks

fell within extralesional space. Finally, a voxel-wise general linear

model was applied using permutation-based non-parametric testing.

Resulting corrected P-value maps were thresholded at P4 0.05.

Average grey matter volume values within clusters were then corre-

lated with the sensorimotor rhythm modulation skill to determine the

correlation coefficient for the cluster.

This study utilized the high-performance computational capabilities

of the Biowulf Linux cluster at the National Institutes of Health,

Bethesda (http://biowulf.nih.gov). Metrics for both functional and

structural network graphs were computed using the Brain

Connectivity Toolbox (Rubinov and Sporns, 2010).

Results

Patient lesion characteristics
All patients displayed single unilateral lesions that differed in

volume and location (Fig. 1A). There were some shared features

however, including a disproportionate disruption of white matter

(74–95% of lesion volume; Table 1) predominantly occurring in

the superior portion of the corona radiata and the external me-

dullary lamina (Fig. 1B). In terms of specific white matter fibre

tracts, the infarcted brain tissue overlapped with the corticospinal

tract and thalamic radiations, consistent with previous reports that

lesions of these tracts result in severe hand motor deficits (Newton

et al., 2006; Ward et al., 2006).

Volitional control of sensorimotor
rhythm skill
Despite an overall group improvement in skill [t(7) = 3.77;

P50.01], there was substantial variability in the ability of differ-

ent patients to improve their success rate in volitional control of

sensorimotor rhythm and consequently brain–computer interface

induced hand grasping function (Fig. 3A). Seven of eight patients

showed a significant increase in skill (detection of significant

change-point for � = 0.05), with a majority of patients showing

exponential performance increases during training with variable

growth rates and delays of onset. Patient SP01 was the single

patient who did not show a significant increase in skill with

training.

Functional network: global cost
efficiency
Global functional network cost efficiency, which quantifies the

overall network capacity to integrate information relative to the

number of significant functional interactions between nodes,

showed a significant positive relationship with acquired sensori-

motor rhythm modulation skill [� = 6.54, t(7) = 3.08, P5 0.05;

Fig. 3C].

Average task-related sensorimotor rhythm power modulation

after training also showed a significant positive relationship with

final success rate [� = 1.07, t(7) = 2.91, P50.05; Fig. 3B]. This

was expected as performance was directly related to a transform-

ation of the sensorimotor rhythm modulation state. Thus, patients

who were able to produce more separable sensorimotor rhythm

power states, through greater event-related synchronization or

desynchronization generated by grasping imagery, acquired

greater sensorimotor rhythm modulation skill.

Ipsilesional structural network: nodal
and edge betweenness centrality
Figure 4 displays the average lesion damage to the tracts compris-

ing the structural network. As would be expected for the severe

hand motor deficits observed in this patient group, overlap of

segmented patient lesions with partial volume estimates of grey

and white matter determined from a large cohort of healthy vol-

unteers showed on average the most significant damage was to

the ipsilesional corticospinal tract. There was also significant

damage to the thalamocortical radiations, particularly those con-

necting thalamic nuclei with the ipsilesional pre- and post-central

gyrus, and the ipsilesional superior and middle frontal gyrus.

Importantly, the data identified interindividual differences in

damage to short and long association fibre pathways connecting

premotor, primary sensorimotor and posterior parietal regions of

the network.

Figure 5 shows the relationship between two measures of net-

work integration, nodal and edge betweenness centrality, with
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skill. Network damage induced a complex pattern of changes in the

relative influence of ipsilesional hemisphere nodes and ipsilesional

association fibre and interhemispheric edges on global network in-

tegration. On the other hand, the influence of contralesional nodes

and edges displayed a uniform relative increase, as damage in

the opposite hemisphere enhanced their role in integrating infor-

mation between frontal and parietal regions of the brain.

Only two significant relationships were observed between local

structural network properties and sensorimotor rhythm modulation

skill. First, nodal betweenness centrality measured at the ipsilesional

precentral gyrus was significantly related to both sensorimotor

rhythm modulation skill [� = 0.003, t(7) = 3.42, P50.05; Fig. 5B],

and task-related sensorimotor rhythm modulation range [� = 0.002,

t(7) = 4.11, P50.01; Fig. 5B]. Furthermore, edge betweenness

measured for the pathway connecting the ipsilesional angular

gyrus and middle frontal gyrus, a component of the frontoparietal

portion of the superior longitudinal fascicle, also showed a significant

positive relationship with acquired sensorimotor rhythm modulation

skill [� = 0.041, t(7) = 5.29, P5 0.005; Fig. 5D].

Extralesional structural network: white-matter
microstructure integrity and grey matter volume

Again, we took the conservative approach of completely excluding

voxels contributing to the lesion mask in any patient from our

analyses exploring the voxel-wise relationships between white

matter anisotropy or grey matter density and sensorimotor

rhythm modulation skill. Lesion pathology may violate some as-

sumptions relating these measures to anatomical microstructure in

the brain, leading to findings that are difficult to interpret. The

results of the tract-based spatial statistics analysis relating extrale-

sional fractional anisotropy to sensorimotor rhythm modulation

skill revealed two significantly correlated clusters in the contrale-

sional superior longitudinal fascicle. The first cluster encompassed

a caudal region of the contralesional superior longitudinal fascicle

adjacent to the anterior intraparietal sulcus (cluster size = 105; max

t-stat = 7.94; MNI location = �29, �56, 35; Fig. 6A and B). The

second cluster was located in a central region of the contralesional

superior longitudinal fascicle, underlying the contralesional sensori-

motor cortex (cluster size = 96; max t-stat = 12.37; MNI loca-

tion = �38, �21, 32; Fig. 6C and D).

A voxel-based morphometry–region of interest analysis revealed

two clusters of grey matter, co-localized to the white matter re-

gions identified with the tract-based spatial statistics analysis,

which showed a significant correlation between volume and sen-

sorimotor rhythm modulation skill. The more caudal cluster was

located within the contralesional intraparietal sulcus (cluster vol-

ume = 440 mm3; max t-stat = 4.20; MNI location = �28, �60,

50; Fig. 7A and B). The second cluster was located along the

Figure 3 Skill, task-related sensorimotor rhythm power contrast, and global functional network cost-efficiency. (A) Sensorimotor rhythm

(SMR) modulation skill. Skill was defined as the proportion of correct trials for each training session, and showed a significant increase for

the group [t(7) = 3.77; P50.01]. Group mean (thick black line) is shown with the 95% confidence intervals (shaded grey area). Individual

subject curves (thin black lines) are overlaid to illustrate the variability across the group. (B) Task-related sensorimotor rhythm power

contrast between target conditions showed a significant positive relationship with final success rate [� = 1.07, t(7) = 2.91, P50.05].

(C) Global cost-efficiency across the entire magnetoencephalography array shows a significant positive relationship with acquired

sensorimotor rhythm modulation skill [� = 6.54, t(7) = 3.08, P50.05].
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Figure 4 Mean impact of lesions on structural connectivity patterns. Fifty corticospinal, thalamocortical, short and long association fibre,

and transcallosal tracts and their 36 related seed and target regions of interest from the JHU Probabilistic Fibre Atlas (Zhang et al., 2010),

were used to construct weighted, undirected structural network connectivity matrices for the ipsilesional hemisphere in each patient.

(A) Cumulative mean fibre damage for all tracts connected to a network node (red filled circles). Individual patient values are also

displayed (small grey filled circles). Diameter of the red-filled circles is proportional to the group SD for each node, relevant to the

evaluation of interindividual differences in skill. (B) Group mean symmetric network matrix showing the mean fibre tract damage for

each edge (1—connectivity value). Filled circles located at grid-line intersections represent existing edges (connections) in the network.

Rows and columns with the white background (dividing the rest of the matrix into quadrants) contain edges representing corticospinal and

thalamocortical fibre pathways. Edges representing ipsilesional hemisphere short and long association fibres are located in the top-left

quadrant (with the black background). Transcallosal fibre pathway edges are located in lower-left and upper-right quadrants.

Contralesional hemisphere short and long association fibre edges between contralesional nodes directly connected to ipsilesional nodes

through transcallosal pathways are located in the lower-right quadrant. Circle diameter is proportional to the SD of lesion damage to a

particular tract across patients. Large diameter circles highlight edges with relatively high damage variability across the group. Circle

colours reflect the group mean fibre tract damage. Grey coloured circles represent edges that are undamaged in all patients (see colour bar

scale). Note the most severe damage occurs in the corticospinal tract as indicated by bright yellow circles. Additionally, there is moderate

damage to ipsilesional short and long association fibre tracts connecting premotor, sensorimotor and posterior parietal regions as shown in

large magenta circles. AG = angular gyrus; CingG = cingulate gyrus; CL = contralateral; CP = cerebral peduncle; Cu = cuneus;

Fu = fusiform gyrus; IFG = inferior frontal gyrus; IL = ipsilateral; IOG = inferior occipital gyrus; LFOG = lateral fronto-orbital gyrus;

LG = lingual gyrus; MFG = middle frontal gyrus; MFOG = middle fronto-orbital gyrus; MOG = middle occipital gyrus; MTG = middle

temporal gyrus; PoCG = post-central gyrus; PrCG = precentral gyrus; PrCu = pre-cuneus; RG = rectus gyrus; SFG = superior frontal gyrus;

SMG = supramarginal gyrus; SOG = superior occipital gyrus; SPG = superior parietal gyrus; STG = superior temporal gyrus; TH = thalamus.
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Figure 5 Structural network nodal and edge betweenness centrality and skill. Nodal betweenness centrality characterizes the influence of

a single node over the sharing of information between other nodes. (A) Grey bars show nodal betweenness centrality values for each node

in an intact network prior to the inclusion of lesions (Zhang et al., 2010). Red circles show the group mean betweenness centrality for each

network node following lesion inclusion. Circle diameter is proportional to the SD of nodal betweenness centrality across patients. Small

grey filled circles show individual patient values. (B) Lesion-induced changes in precentral gyrus nodal betweenness centrality correlates

with both skill [� = 0.003, t(7) = 3.42, P 5 0.05], and task-related sensorimotor rhythm power contrast between target conditions

[� = 0.002, t(7) = 4.11, P50.01]. (C) Group mean symmetric network matrix showing the mean lesion-induced change in betweenness

centrality for each edge following application of lesion damage to the network. As in Fig. 4, filled circles located at grid-line intersections

represent existing edges (connections) in the network. Rows and columns with the white background (dividing the rest of the matrix into

quadrants) contain edges representing corticospinal and thalamocortical fibre pathways. Edges representing ipsilesional hemisphere short

and long association fibres are located in the top-left quadrant (with the black background). Transcallosal fibre pathway edges are located

in lower-left and upper-right quadrants. Contralesional hemisphere short and long association fibre edges between contralesional nodes

directly connected to ipsilesional nodes through transcallosal pathways are located in the lower-right quadrant. Circle diameter is pro-

portional to the SD in edge betweenness centrality difference across patients. Large diameter circles highlight edges with relatively high

betweenness centrality variability across the group. Circle colours reflect the group mean edge betweenness centrality difference. Grey

coloured circles indicate edges where betweenness centrality did not change (see colour bar scale). (D) Change in edge betweenness

centrality measured for the connection between the ipsilesional angular gyrus and middle frontal gyrus shows a significant positive

relationship with skill [� = 0.041, t(7) = 5.29, P50.005]. It should be noted that damage caused by lesions (Fig. 4) induces a complex

pattern of changes in the relative influence of ipsilesional hemisphere nodes and ipsilesional association fibre and interhemispheric edges

on global network integration. However, the influence of contralesional nodes and edges displays a uniform relative increase, as damage in

the opposite hemisphere enhances their role in integrating information between frontal and parietal regions of the brain. AG = angular

gyrus; CingG = cingulate gyrus; CL = contralateral; CP = cerebral peduncle; Cu = cuneus; Fu = fusiform gyrus; IFG = inferior frontal gyrus;

IL = ipsilateral; IOG = inferior occipital gyrus; LFOG = lateral fronto-orbital gyrus; LG = lingual gyrus; MFG = middle frontal gyrus;

MFOG = medial fronto-orbital gyrus; MOG = middle occipital gyrus; MTG = middle temporal gyrus; PoCG = post-central gyrus;

PrCG = precentral gyrus; PrCu = pre-cuneus; RG = rectus gyrus; SFG = superior frontal gyrus; SMG = supramarginal gyrus;

SMR = sensorimotor rhythm; SOG = superior occipital gyrus; SPG = superior parietal gyrus; STG = superior temporal gyrus;

TH = thalamus.
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grey–white matter border of the rostral precentral gyrus near the

junction of rostral M1, ventral premotor cortex and the dorsal

premotor cortex (cluster volume = 248 mm3; max t-stat = 3.87;

MNI location = �42, �10, 46; Fig. 7C and D) (Tomassini et al.,

2007).

Discussion
The purpose of this study was to gain insight into the mechanisms

related to volitional control of neural activity through operant con-

ditioning in patients with chronic stroke. This skill is important for

acquiring control of computer-based applications or mechanical

devices that can replace or facilitate extinguished behaviours, as

in the case of brain–machine interfaces (Birbaumer and Cohen,

2007; Wolpaw, 2007). Additionally, voluntary control of brain

rhythms could promote functional plasticity following stroke and

traumatic brain injury that impact recovery of motor skills (Ang

et al., 2010; Wang et al., 2010b; Grosse-Wentrup et al., 2011a).

To address this question, we longitudinally trained a group of pa-

tients with chronic stroke with severe paralysis of the affected

hand to volitionally modulate neural activity recorded from sen-

sorimotor regions of the lesioned hemisphere, and used a compre-

hensive analysis of structural and functional network characteristics

to evaluate possible substrates of this skill. Our results demon-

strate that patients with more cost efficient global functional net-

work activity and greater bi-hemispheric indices of structural

connectivity between frontal and parietal regions exerted better

sensorimotor rhythm modulation skill after longitudinal training

associated with grasping imagery.

We purposefully chose a group of patients with chronic stroke

with comparably severe hand motor deficits, who were unable to

elicit extrinsic hand muscle EMG activity. Due to the severity of

the motor deficits, this is a population of patients who are typically

excluded from most experimental studies (Page et al., 2007) and

stand to benefit from training strategies that involve motor im-

agery (Sharma et al., 2006; Page et al., 2009) and neurofeedback

(Birbaumer and Cohen, 2007; Fetz, 2007; Wolpaw, 2007;

Donoghue, 2008; Birbaumer et al., 2009). A further rationale

for studying this patient group is that they present an ideal op-

portunity to study volitional control of neural activity in the le-

sioned brain without the confound of uncontrolled voluntary

paretic hand muscle contraction. These patients were uniformly

required to engage motor networks in an experiential and func-

tionally relevant manner through grasping imagery of the affected

hand, resulting in corresponding actions of a hand orthosis in

which the hand was embedded. Additionally, we were interested

in including patients whose comparable clinical outcome in the

Figure 6 Extralesional white matter fractional anisotropy (FA) related to skill. Two white matter clusters in the contralesional hemisphere

were the only locations where there was a significant positive relationship between extralesional fractional anisotropy and acquired

sensorimotor rhythm modulation skill across the stroke patient group. (A and B) A caudal region of the contralesional superior longitudinal

fascicle adjacent to the anterior intra-parietal sulcus (cluster size = 105; max t-stat = 7.94; MNI location = �29, �56, 35). (C and D) A

central region of the contralesional superior longitudinal fascicle underlying sensorimotor cortex (cluster size = 96; max t-stat = 12.37; MNI

location = �38, �21, 32). Both clusters are significant at the level of P50.05 (corrected). Note that all lesioned areas were excluded

from this analysis.
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chronic stage resulted from heterogeneous lesion pathology, thus

allowing us to explore the relationship between inter-individual

variability in indices of structural connectivity and sensorimotor

rhythm modulation skill.

Global functional network
cost-efficiency
We found that voluntary control of neural activity in the form of

sensorimotor rhythm modulation skill following longitudinal train-

ing correlated with global but not local cost-efficiency, suggesting

a link between skill and distributed functional network architec-

ture. Global functional network cost-efficiency appears to play an

important role in other settings as well. For example, functional

network cost-efficiency appears to predict working memory cap-

acity (Bassett et al., 2009). Furthermore, longitudinal resting-state

functional connectivity MRI data acquired throughout the

acute-to-chronic stages of stroke suggest that changes in connect-

ivity resulting in increased network efficiency is indicative of adap-

tive reorganization that results in improved recovery of motor

function (Wang et al., 2010a; Grefkes and Fink, 2011; Rehme

et al., 2011b). Our results are consistent with these previous re-

ports and suggest that global functional network cost-efficiency

may represent a more powerful predictor of acquired skill than

spatially-dependent (i.e. voxel-based) measures, as lesion hetero-

geneity is highly prevalent after chronic stroke (Crofts et al.,

2011). Changes in connectivity measurements between early

and late training did not predict sensorimotor rhythm modulation

skill, probably due to the high inter and intrasubject variability in

the initial sessions.

Our primary interest was in utilizing sensorimotor rhythm

modulation that occurs during normal motor imagery to drive

the hand orthosis in our patients with chronic stroke. Each patient

had an initial session during which they performed alternate blocks

of rest and motor imagery of the affected hand to characterize

individual spatial and frequency profiles of sensorimotor rhythm

modulation. We found that the frequency band range

producing most robust modulation across our patient group, in

terms of both amplitude and topographic characteristics, was

9–12 Hz of the alpha band. This was consistent with a previous

study performed in healthy volunteers that also used a

magnetoencephalography-based brain–computer interface with

the same type of classifier (Mellinger et al., 2007), as well as in

a stroke patient study using an EEG-based brain–computer inter-

face (Prasad et al., 2010). Our interest in looking at functional

connectivity across the magnetoencephalography array was to

assess whether global patterns of synchronization between regions

were related in some way to regional sensorimotor rhythm modu-

lation skill. Several studies looking at the role of synchronous

Figure 7 Extralesional grey matter (GM) volume related to skill. A region of interest-based voxel-based morphometry analysis of grey

matter regions co-localized to regions of fractional anisotropy that correlated with sensorimotor rhythm modulation skill revealed two

complimentary clusters showing a positive correlation between grey matter volume and sensorimotor rhythm modulation skill. (A and B) A

caudal cluster is located within the contralesional intraparietal sulcus (cluster volume = 440 mm3; max t-stat = 4.20; MNI location = �28,

�60, 50). (C and D) A second cluster is located along the grey–white matter border of the rostral precentral gyrus and near the junction of

rostral M1, ventral premotor cortex and the dorsal premotor cortex (cluster volume = 248 mm3; max t-stat = 3.87; MNI location = �42,

�10, 46). Both clusters are significant at the level of P5 0.05 (corrected).
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oscillatory activity suggest that alpha band rhythms play an im-

portant role in the coupling of distant brain regions allowing for

global integration of network information (Palva and Palva, 2011).

The measure of network organization we employed here,

cost-efficiency, was used to assess this role of long-range alpha

band synchronization, as it estimates the capacity of the functional

network configuration to integrate global information.

Voluntary control of neural activity
relates to indices of parietofrontal
structural connectivity
We then evaluated the relationship between skill and interpatient

differences in network architecture caused by lesion-related dec-

rements of structural connectivity. First, we found that volitional

control of neural activity at the end of training correlated with

nodal betweenness centrality of the ipsilesional precentral gyrus.

In isolation, the relationship between skill and this property of

ipsilesional structural connectivity is consistent with damage to

descending corticospinal or corticothalamic pathways typically

observed in patients with severe motor deficits (Newton et al.,

2006; Ward et al., 2006). However, as the precentral gyrus is

directly connected to premotor (superior and middle frontal gyri)

and posterior parietal (angular and supramarginal gyri) regions in

the network that serve as important hubs for occipitoparietal and

prefrontal regions, damage to these pathways will also reduce

betweenness centrality of the precentral gyrus. This is consistent

with functional connectivity MRI findings reported by Wang et al.

(2010a, 2011), showing that a reduction in functional connectivity

between M1 and premotor regions resulted in a decrease in nodal

betweenness centrality.

Additionally, skill correlated with edge betweenness centrality of

the frontoparietal portion of the superior longitudinal fascicle. In

the structural network model, ipsilesional precentral gyrus and

frontoparietal portion of the superior longitudinal fascicle are the

primary means through which information is shared between

visuomotor regions located in posterior parietal and frontal cortices

(Makris et al., 2005; Schmahmann et al., 2007). The frontopar-

ietal portion of the superior longitudinal fascicle is a long associ-

ation fibre pathway that directly connects the precentral gyrus and

middle frontal gyrus with the angular gyrus and supramarginal

gyrus. The connectivity of the frontoparietal portion of the super-

ior longitudinal fascicle appears consistent with two subcompo-

nents of the superior longitudinal fascicle, superior longitudinal

fascicle II and III, which have been previously defined in both

humans and monkeys (Makris et al., 2005; Schmahmann et al.,

2007). The ipsilesional precentral gyrus is also directly connected

to the inferior and superior frontal gyri and the post-central gyrus

in the ipsilesional hemisphere through short association fibre path-

ways. This is consistent with the known anatomical connectivity of

distal forelimb representations located within the primary motor,

somatosensory, and premotor regions in the monkey (Dum and

Strick, 2005). It also connects to the contralesional precentral

gyrus through transcallosal fibres and is the only cortical region

in the model that contributes to the corticospinal tract.

The results of the tract-based spatial statistics and region of

interest-based voxel-based morphometry analyses, which did ex-

clude peri-infarct areas and thus a large portion of the ipsilesional

hemisphere, revealed consistent homologous structures in the con-

tralesional hemisphere where differences in microstructure corre-

lated with skill. These observations suggest that grey matter

volume in the intraparietal sulcus and a region near the transition

between rostral primary motor and caudodorsal ventral premotor,

as well as microstructural integrity of the superior longitudinal fas-

cicle, a fibre bundle connecting these two regions, are directly

related to skill. Thus, white and grey matter architectural features

may provide support to the increased global integration of infor-

mation by contralesional white matter association fibres linking

frontal and parietal regions of the cortex. It is well known that

the contralesional hemisphere contributes to functional recovery

after brain lesions that result in more substantive motor deficits

(Johansen-Berg et al., 2002; Harris-Love et al., 2005, 2011;

Rehme et al., 2011a). It is conceivable that testing of patients

with lesser motor deficits, known to benefit from ipsilesional ac-

tivity, could unveil a stronger ipsilesional contribution as proposed

before (Ward et al., 2003; Fridman et al., 2004). Additionally, it

remains to be determined if differences in network architecture

identified in this study reflect pre-morbid state or compensatory

changes. Direct comparison between the neural substrates under-

lying performance of this task in patients and healthy subjects,

which could contribute to address this issue, is problematic be-

cause the rate of skill acquisition in patients is very slow (weeks)

while in healthy volunteers is very fast (often within a single ses-

sion) (Mellinger et al., 2007).

The superior longitudinal fascicles II and III identified in our

study are the primary white matter fibre pathways that directly

connect parietofrontal regions that are functionally related to the

planning, selection and execution of reaching and grasping move-

ments in both monkeys and humans (Desmurget et al., 1999;

Shimazu et al., 2004; Cattaneo et al., 2005; Tunik et al., 2005,

2008; Grol et al., 2007; Olivier et al., 2007; Umilta et al., 2007;

Davare et al., 2010), with a majority of the interactions within this

reaching and grasping network showing similar modulation with

related imagery as well (Gao et al., 2010). Our data provide in-

sight into how these intact networks reorganize to acquire skill

after human brain lesions. In our patients, skill also correlated

with fractional anisotropy in the contralesional superior longitudin-

al fascicle and with grey matter volume in the adjacent intrapar-

ietal sulcus and rostral precentral gyrus. This implies that a

patient’s ability to volitionally modulate neural activity within the

ipsilesional sensorimotor cortex after longitudinal training may be

related to the recruitment of a more integrated bilateral parieto-

frontal functional network than those described in healthy human

and non-human primates in the literature. Reaching and grasping

behaviour, as that asked of our patients to imagine, is the primary

means through which humans and other primates perform

goal-directed actions. Several computational and theoretical

models have been proposed that attempt to account for the con-

tributions of specific frontal and parietal cortical regions to these

behaviours (Wolpert, 1997; Wolpert and Ghahramani, 2000;

Shadmehr and Wise, 2005; Frey et al., 2011). While dorsolateral

and orbital prefrontal regions, which integrate information related
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to attention and motivation, help identify goals (Price et al.,

1996), interactions between granular prefrontal regions with

dorsal and ventral premotor areas lead to the selection of appro-

priate actions for achieving these desired goals (O’Shea et al.,

2007; Tunik et al., 2008; Buch et al., 2010). On the other

hand, the superior and inferior posterior parietal cortex is respon-

sible for integrating visual and proprioceptive information used to

evaluate the current state of the grasping action relative to the

goal while it is being executed (Glover et al., 2005; Tunik et al.,

2005). This evaluation is continuously relayed to the premotor

cortex, which uses the information to update action plans until

the goal is achieved (Tunik et al., 2008; Davare et al., 2010).

Voluntary modulation of neural activity
associated with grasping imagery
training after stroke
Together, these structural and functional findings support a coher-

ent argument for the superior longitudinal fascicle, the source of

long-range corticocortical pathways connecting parietofrontal

visuomotor areas, as a crucial anatomical substrate underlying

the ability to volitionally modulate neural activity within ipsilesional

sensorimotor areas following stroke. Over the past decade, it has

been shown that it is possible to elicit voluntary modulation of

sensorimotor rhythm through motor imagery (McFarland et al.,

2000; Pfurtscheller, 2000). Studies in healthy volunteers and pa-

tients with stroke show that motor imagery results in similar par-

ietofrontal functional network interactions to those observed for

execution of hand motor tasks (Sharma et al., 2009a; Gao et al.,

2010). Moreover, the ability of healthy volunteers to acquire vol-

itional control of sensorimotor rhythm modulation appears to be

related to the degree that the constituent regions of this network

are recruited by the motor imagery strategy used (Halder et al.,

2011). Thus, it would be reasonable to expect that volitional con-

trol of neural activity through operant conditioning using motor

imagery would relate to architectural features of this network.

Here, the present results suggest that the impact of individual

brain lesions on both local and global properties of the intrinsic

motor system can be characterized and give insight into the dy-

namic range of the network, even in a relatively small group of

patients possessing lesion heterogeneity, but homogenously severe

hand motor deficits.

It is possible that in the future, knowledge of individual patient’s

structural and functional network architecture may be used as a

biomarker predictive of response to neurorehabilitative treatments

(Cramer et al., 2007) or to optimize training duration (Page et al.,

2009), intensity (Wolf et al., 2007) or practice schedule (Wolf

et al., 2010). Clearly, more work will be required to reach this

point. We hope that this knowledge could eventually be used in

concert with non-invasive brain stimulation protocols (Hummel

et al., 2005; Boggio et al., 2007; Nowak et al., 2008; Celnik

et al., 2009; Edwards et al., 2009; Grefkes et al., 2010) or

pharmacological interventions (Chollet et al., 2011; Wang et al.,

2011) to sculpt plasticity in a manner that promotes the formation

of adaptive network solutions allowing for better volitional control

of sensorimotor or other brain rhythms, including beta

(Bai et al., 2008), gamma (Grosse-Wentrup et al., 2011b) and

slow cortical oscillations (Hinterberger et al., 2005), not studied

in this investigation. Additionally, a larger population of patients

with more heterogeneous lesions and deficits, as well as longitu-

dinal imaging data helping to characterize changes in structural

networks over time will be required before prognostic benchmarks

can be identified. Indeed, the continued connectomics-based ex-

ploration of structural and functional brain networks at the sys-

tems level may provide greater insight into relationships between

behaviour, plasticity and brain anatomy and physiology following

stroke (Schmahmann and Pandya, 2008; Bullmore and Sporns,

2009; Rubinov and Sporns, 2010; Bullmore and Bassett, 2011).
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